

The Ohio State University

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

Overview of OSU research plan

Walter Lempert, Igor Adamovich, J. William Rich, and Jeffrey Sutton

MURI Kick-Off Meeting November 4, 2009

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate or branching or street	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 04 NOV 2009		2. REPORT TYPE		3. DATES COVE 00-00-2009	red To 00-00-2009	
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER			
Overview of OSU 1		5b. GRANT NUMBER				
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AD ity,Nonequilibrium mbus,OH,43210			8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)				
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO U.S. Government of	or Federal Rights Li	cense				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	29	RESTONSIBLE FERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Thrust 1. Experimental studies of nonequilibrium air-fuel plasma kinetics using advanced non-intrusive diagnostics

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Task 1: Low-to-Moderate (T=300-800 K) temperature, spatial and time-dependent radical species concentration and temperature measurements in nanosecond pulse plasmas in a variety of fuel-air mixtures pressures (P=0.1-5 atm), and equivalence ratios ($\phi\sim0.1-3.0$)

Goal: Generate an extensive set of experimental data on radical species concentrations and temperature rise; elucidate kinetic mechanisms of low-temperature plasma chemical fuel oxidation and ignition using kinetic modeling. Bridge the gap between room-temperature data (low-pressure gas discharges) and high-temperature data (shock tubes)

Test Bed #1: High-temperature, high-pressure nanosecond pulse discharge cell

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

High-pressure discharge cell inside a tube furnace (6 inch bore, up to T=1200° C) Premixed fuel-air flow (~1 m/s), preheated in the furnace, from 0.1 atm to a few atm Repetitive nanosecond pulse discharge plasma: 20-40 kV, 5-25 nsec, 10 Hz to 100 kHz Optical access (LIF, TALIF, CARS, CRDS) on the sides

Fuels: hydrogen, methane, ethylene, propane, pentane, methanol & ethanol vapor

Repetitive nanosecond pulse plasma for kinetic studies:

Air, P=60 torr, v=40 kHz, 40 msec burst, 1 μsec gate

Pulse #400

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Pulse #800

air

Pulse #200

Repetitive nanosecond pulse plasma for kinetic studies: Ethylene-air, P=40 torr, ϕ =1, v=40 kHz

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

• Nearly uniform plasma during entire burst (except pulses #1 and #2)

- Ignition does not occur, likely due to rapid wall cooling
- Pressure is low can this experiment be done at higher pressures?

Repetitive nanosecond pulse plasma for kinetic studies: Ethylene-air, P=60 torr, ϕ =1, v=40 kHz

The Ohio State University

Pulse #500

#500 to #501

FLAME

Nonequilibrium Thermodynamics Laboratories

Pulse #600

#600 to #601

- Uniform plasma during first few tens of pulses (except pulses #1 and #2)
- Well-defined filaments form in pulse #100, persist for several hundred pulses
- After ignition occurs, flame fills entire discharge volume, and plasma becomes uniform again
- Filamentation likely due to ionization / heating instability
- This is unacceptable: need to keep the plasma uniform during entire burst
- We know that preheating will improve plasma uniformity
- Sustaining plasma in a heated cell will allow measurements at higher pressures

Time-resolved species concentrations: O and H atoms (Two-Photon Absorption LIF with Xe and Kr calibration)

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Previous results: O atoms in air, methane-air, and ethylene-air at P=60 torr (single-pulse and burst mode, initially at T=300 K)

Objective: measure time-resolved O and H atoms in nsec pulse discharge plasmas in H_2 -air and C_xH_y air mixtures, at $P \sim 0.1 - 1$ atm, T=300-800 K

Outcome: kinetic mechanism of low-temperature plasma fuel dissociation and oxidation (specifically rates of O atom generation in the plasma and O atom reactions with fuel species)

Time-resolved species concentrations: OH (LIF with Hencken adiabatic burner calibration)

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Work currently underway: OH in methane-air and ethylene-air at P=60 torr (single-pulse and burst mode, initially at T=300 K)

Objective: measure time-resolved OH in nsec pulse discharge plasmas in H_2 -air and C_xH_y air mixtures, at $P \sim 0.1 - 1$ atm, T=300-800~K

Outcome: kinetic mechanism of low-temperature plasma fuel oxidation (specifically rates of H atom abstraction from fuel species)

Time-resolved species concentrations: NO (LIF with calibration using known NO-N₂ mixture)

The Ohio State University

NO mole fraction

Nonequilibrium Thermodynamics Laboratories

Previous results: NO in air, methaneair and ethylene-air at P=60 torr (single-pulse, initially at T=300 K). State-of-the-art kinetic models cannot explain time-resolved data. Possible effect of $N_2(X,v) + O$ reaction.

Objective: measure time-resolved NO in nsec pulse discharge plasmas in H_2 -air and C_xH_y air mixtures, at $P \sim 0.1$ - 1 atm, $T=300-800~\rm K$

Outcome: kinetic mechanism of low-temperature plasma fuel oxidation (specifically O_2 dissociation vs. NO formation in N_2 * reactions)

Time-resolved, spatially resolved temperature (purely rotational CARS)

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Time, msec

15

Previous results: time-resolved in temperature air and ethylene-air at P=40 torr (burst mode, initially at T=300 K). significant **Evidence** of additional heat release in fuelair, compared to air

Objective: measure temperature nsec in pulse discharge plasmas in H₂-air and C_xH_v air mixtures, at P ~ 0.1 - 1 atm, T=300-800 K

Outcome: kinetic mechanism of low-temperature plasma chemical energy release fuel exothermic oxidation reactions with radicals

Test Bed #2: Flat flame McKenna burner with nanosecond pulse discharge

Flat flame burner inside a six-arm cross vacuum chamber (8 inch bore)

Premixed fuel-air flow (~ 0.1 -1.0 m/s) with N₂ co-flow, P=10-40 torr

Repetitive nanosecond pulse discharge plasma: 20-40 kV, 5-25 nsec, 10 Hz to 100 kHz

Optical access (LIF, TALIF, CRDS) on two perpendicular axes

Fuels: hydrogen, methane, ethylene, propane, pentane, methanol & ethanol vapor

Interaction of plasma and flame chemistry: spatially resolved species concentrations and temperature

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

- Steady, laminar, low-pressure flat flames allow spatially-resolved measurements of temperature and species concentrations
- Minimize transport influence; isolate kinetic effects
- Can investigate full range of temperature conditions (from below 500 K to 2000 K) by adjusting measurement position (i.e. height above burner)
- Typical spatial scale ~5-20 mm, spatial resolution <200 μm</p>
- Straightforward integration of nsec discharge plasma into a low-pressure flame facility and study of plasma effects (i.e. measurements with plasma "off" and "on")

Steady, laminar, 30 Torr, 1-D flame

Previous low-pressure flame results (LIF):

P=10-40 torr; CH_4 , C_2H_6 , C_3H_8 , C_4H_{10} ; ϕ =0.6 -1.4

The Ohio State University

Flame temperature from rotational structure of **OH A-X (1,0)** band near 282 nm

Nonequilibrium Thermodynamics Laboratories

Spectral features used for profiles of flame species:

CH A-X (**0,0**) at 435 nm

Laboratory for Advanced Fluid Dynamics and Combustion Research

Previous low-pressure flame results (LIF): P=10-40 torr; CH₄, C₂H₆, C₃H₈, C₄H₁₀; φ =0.6 -1.4

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Spatially-resolved measurements of radicals to understand hightemperature flame chemistry, help kinetic model development

Kinetic modeling: GRI-Mech 3.0

We will look at the region upstream of the flame where coupling between plasma kinetics and flame chemistry is most important

Low-pressure flame / plasma measurements (LIF, CRDS)

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Objective: Examine coupling of plasma and combustion kinetics in a 1-D low-pressure flame. Use spatially-resolved species concentration and temperature measurements by LIF (OH, H, O, and CH) and CRDS (HO₂, HCO, CH₃) to study the effect of quasi-steady (RF) and repetitively pulsed nsec discharge plasmas on low-temperature chemistry and coupling with the flame zone

Outcome: Kinetic mechanism of low-temperature plasma chemical fuel oxidation and energy release, and its effect on flame speed and burn rate. Specifically, boundary between "low-T" and "high-T" chemistry by measuring HO_2 radical concentration, at the conditions when O_2 is electronically excited

$$O_2 + H \rightarrow OH + O$$
 (high temperatures)

$$O_2 + H + M \rightarrow HO_2 + M$$
 (low temperatures)

CRDS diagnostics will be used in both "test bed" experiments, (I) high-T, high-P nsec discharge plasma cell, and (II) low-P flame / plasma cell

Thrust 2. Kinetic model development and validation

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Task 8: Development and validation of a predictive kinetic model of nonequilibrium plasma fuel oxidation and ignition, using experimental results of Thrust 1

Goal: Identify key mechanisms, reaction, and rates of plasma chemical fuel oxidation processes for a wide range of fuels, pressures, temperatures, and equivalence ratios. This is absolutely essential to predictive capability of the model.

Current state of the art: hydrocarbon-air, low-temperature plasma chemistry kinetic model

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

- Air plasma model: equations for ground state species (N, N₂, O, O₂, O₃, NO, NO₂, N₂O), charged species (electrons and ions), and excited species (N₂(A³ Σ), N₂(B³ Π), N₂(C³ Π), N₂(a'¹ Σ), O₂(a¹ Δ), O₂(b¹ Σ), O₂(c¹ Σ), N(²D), N(²P), O(¹D)) produced in the plasma.
- Two-term expansion Boltzmann equation for plasma electrons
- Fuel-air plasma: model combined with GRI Mech 3.0 $C_x H_y$ oxidation mechanisms, supplemented with fuel dissociation by electron impact and in reactions with electronically excited nitrogen
- Peak E/N adjusted for pulse energy to be same as predicted by the nanosecond pulse discharge model

We have absolutely no reason to trust the model predictions: GRI Mech 3.0 (or any other combustion mechanism) is not designed to work at low temperatures (starting at T=300 K)

Confidence in the model can be provided <u>only by detailed kinetic</u> <u>measurements</u> such as discussed in Thrust 1 plan

Here is what we know so far: dominant radical and energy release processes in C_2H_4 -air predicted by the model

The Ohio State University

O atom generation				
$\mathbf{N}_2 + \mathbf{e}^{-} = \mathbf{N}_2(\mathbf{A}^3 \mathbf{\Sigma}) + \mathbf{e}^{-}$				
$\mathbf{N}_2 + \mathbf{e}^{-} = \mathbf{N}_2(\mathbf{B}^3 \mathbf{\Pi}) + \mathbf{e}^{-}$				
$N_2 + e^- = N_2(C^3\Pi) + e^-$				
$\mathbf{N}_2 + \mathbf{e}^{-} = \mathbf{N}_2(\mathbf{a}^{\prime 1}\Sigma) + \mathbf{e}^{-}$				
$O_2 + e^- = O(^3P) + O(^3P, ^1D) + e^-$				
$N_2(C^3\Pi) + O_2 = N_2(a^{12}\Sigma) + O_2$				
$\mathbf{N}_{2}(\mathbf{a}^{'1}\Sigma) + \mathbf{O}_{2} = \mathbf{N}_{2}(\mathbf{B}^{3}\Pi) + \mathbf{O}_{2}$				
$\mathbf{N}_2(\mathbf{B}^3\Pi) + \mathbf{O}_2 = \mathbf{N}_2(\mathbf{A}^3\Sigma) + \mathbf{O}_2$				
$\mathbf{N}_2(\mathbf{A}^3\Sigma) + \mathbf{O}_2 = \mathbf{N}_2 + \mathbf{O} + \mathbf{O}$				
Fuel dissociation				
C_2H_4 + e- = products + e-				
$N_2(A^3\Sigma) + C_2H_4 = N_2 + C_2H_3 + H$				
$N_2(B^3\Pi) + C_2H_4 = N_2 + C_2H_3 + H$				
$N_2(C^3\Pi) + C_2H_4 = N_2 + C_2H_3 + H$				
$N_2(a^{1}\Sigma) + C_2H_4 = N_2 + C_2H_3 + H$				
O atom decay				
$O + C_2H_4 = CH_3 + HCO$				
$O + C_2H_4 = H + CH_2CHO$				
$C_2H_3 + O_2 = HCO + CH_2O$				
$ \begin{array}{cccc} C_2H_3 + O_2 &= O &+ CH_2CHO \\ O + O_2 + M &= O_3 + M \end{array} $				
$\mathbf{O} + \mathbf{O}_2 + \mathbf{M} = \mathbf{O}_3 + \mathbf{M}$				
$O + O_3 = O_2 + O_2$				

Nonequilibrium Thermodynamics Laboratories

Fuel energy release
$O + CH_2CHO = H + CH_2 + CO_2$
$\mathbf{H} + \mathbf{O_2} + \mathbf{M} = \mathbf{HO_2} + \mathbf{M}$
$\mathbf{O} + \mathbf{HO}_2 = \mathbf{OH} + \mathbf{O}_2$
$\mathbf{OH} + \mathbf{HO}_2 = \mathbf{O}_2 + \mathbf{H}_2\mathbf{O}$
$\mathbf{OH} + \mathbf{C}_2 \mathbf{H}_4 = \mathbf{C}_2 \mathbf{H}_3 + \mathbf{H}_2 \mathbf{O}$
$HO_2 + CH_3 = OH + CH_3O$
$CH_3O + O_2 = HO_2 + CH_2O$
$O_2 + CH_2CHO = OH + HCO + HCO$
$HCO + O_2 = HO_2 + CO$
$\mathbf{HO_2} + \mathbf{HO_2} = \mathbf{O_2} + \mathbf{H_2O_2}$
$\mathbf{CH_2} + \mathbf{O_2} = \mathbf{H} + \mathbf{H} + \mathbf{CO_2}$

Pulse energy balance, J

Time, seconds

Model validation summary: so far so good...

... but no surprise if the model fails at some point

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

15

10

Time, msec

Need a lot more data from Thrust 1 for <u>extensive</u> model validation

Outcome: a self-consistent low-temperature fuel-air plasma chemical mechanism

Thrust 3. Experimental and modeling studies of fundamental nonequilibrium discharge processes

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Task 10: Characterization and modeling of nsec pulse discharges

Goal: Prediction of E/N and electron density in the plasma, individual pulse energy coupled to the plasma, and their scaling with pressure, temperature, pulse waveform, and mixture composition

Two-pronged approach to plasma assisted ignition modeling

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Predictive modeling of energy release rate and ignition delay time in low-temperature, repetitive nanosecond pulse fuel-air plasmas requires:

- E/N in the plasma, individual pulse energy coupled to the plasma, and their scaling with pressure, temperature, pulse waveform, and mixture composition
- Air plasma and fuel-air plasma chemistry: reactions among ground state species, excited species and radicals generated in the plasma, and their effect on energy release rate

These two problems require separate analysis:

- Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma chemistry: too many species (~100) and reactions (~1,000)
- Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec time scale sheath dynamics and plasma shielding

Approach:

- Predict plasma E/N and coupled pulse energy using nsec pulse plasma / sheath model
- Incorporate results into fuel-air plasma chemistry model

Previous results:

Repetitive nsec discharge pulse energy measurements

The Ohio State University

Nitrogen, P=300 torr, v=100 kHz

Nitrogen, P=650 torr, v=100 kHz

Nonequilibrium Thermodynamics Laboratories

Nitrogen, P=350 torr, v=100 kHz 0.3 seconds after start (pulse # 30,000)

> Pulse energy 11 mJ/pulse Discharge power 110 W

What are the electric field and the electron density?

Previous results:

Analytic nsec pulse discharge plasma / sheath model

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

- Equations for electron and ion number density
- Poisson equation for the electric field
- Plane-to-plane discharge geometry
- Voltage pulse: Gaussian fit to experimental waveform
- Dielectric plate charging / plasma shielding

Analytic solution: time-dependent electron density and electric field in the plasma, coupled pulse energy

Excellent agreement with numerical solution, experimental data

Previous results:

Analytic nsec pulse discharge plasma / sheath model

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

$$Q_{total} = Q_{break} + Q_{after} \approx \frac{1}{2} C_{load} V_{peak}^2 \left[\left(\frac{V_0}{V_{peak}} \right)^2 + \frac{\sqrt{2\pi}}{v_{RC} \tau_{pulse}} \right]$$

- Coupled pulse energy scales with the number density, can be increased by increasing peak voltage, reducing pulse duration
- Excellent agreement with numerical solution, experimental data

Electric field and electron density measurements: CARS, Thomson scattering

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Entire test section mounted on a translation stage for spatially resolved measurements.

Objective: measure time- and space-resolved electric field and electron density in nsec pulse discharge plasmas using psec CARS and Thomson scattering; comparison with the model

Outcome: predictive capability for electron impact kinetic processes in the plasma

Thrust 4. Studies of diffusion and transport of active species in representative 2-D reacting flow geometries

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Task 12: Ignition and flameholding in nonequilibrium plasma cavity flows at low static temperatures

Goal: Determine viable approaches to flameholding in high-speed flows using low-temperature plasmas. We simply cannot process the entire flow with the plasma!

Previous results: cavity ignition in premixed ethylene-air flows by nsec plasma (25 kV, 20 nsec, 40 kHz)

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Air, 150 torr, 25 m/s

Fuel-air, 150 torr, 25 m/s

Diffuse plasma in air, filamentation in fuel-air during ignition, diffuse plasma after ignition

Previous results: cavity ignition and flameholding in premixed and non-premixed ethylene-air flows by nsec plasma

The Ohio State University

Fuel-air, 175 torr, 85 m/s

Nonequilibrium Thermodynamics Laboratories

- Ignition and stable flameholding in both premixed and non-premixed flows up to 100 m/sec (global ϕ =1 in both cases)
- 80-90% burned fuel fraction
- Plasma power ~100 W, combustion energy release 35 kW
- After ignition, plasma needs to be "on" at all times (flame blow-off without plasma)

Ignition and flameholding in nonequilibrium plasma cavity flows

The Ohio State University

Nonequilibrium Thermodynamics Laboratories

Objectives:

- Further studies of cavity ignition and flameholding by repetitive nsec pulse plasmas in fuel injection flows (hydrogen and hydrocarbons)
- High frame rate (10-20 kHz) NO and OH PLIF imaging of ignition process using burst mode laser
- Increasing flow velocity beyond 100 m/sec, operating at low global equivalence ratios (ϕ =0.1-0.2)
- Comparison with kinetic modeling calculations using reduced plasma chemical ignition mechanism. Plasma flameholding mechanism after ignition thermal or not?

Outcome: Demonstration of true predictive capability of the model